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Abstract. We calculate the ground state energies and wavefunctions for small
systems of fermions on a lattice using singly and doubly periodic boundary conditions.
We find minima in the ground state energy when the magnetic flux per plaquette
corresponds to filling fractions with odd denominators. We interpret these minima
in terms of fractional quantum Hall states. The pair correlation function at nearest
and next-nearest neighbours is calculated as a function of the repulsive interaction
strength between particles.

1. Introduction

The properties of tight-binding electrons on a square lattice in a magnetic field are
complicated and rich in structure, The single-particle spectrum shows such interesting
features as self-similarity, nesting properties and a Landau-level-like structure which
has been studied by Hofstadter [1] and later by others {2].

The problem of interacting elecirons in a square lattice has attracted attention as
a possible model for high-temperature superconductors. Theoretical interest has been
concentrated on commensurate flux states in the {-J model [3,4], the study of anyons
on a lattice [5] and the relation to the fractional quantum Hall effect (FQHE) [6].

Recently, Canright ef al {14] studied small systems of anyons on a lattice. They
found that as a function of statistics and applied magnetic field the ground state
of ‘free’ anyons could be either superconducting or quantum-Hall-like. Anyons are
equivalent to bosons with flux tubes attached. The Aharonov-Bohm phases asso-
ciated with encirclement of a flux tube reproduce the phase factor required by the
statistics. Canright et ol [14] also found that a mean field theory, which accounted
for the statistics on average by treating the flux tubes attached to the particles as a
homogenecus background magnetic field, predicted the right ground state for a large
range of parameters.

The most widely accepted theory of the FQHE is based on Laughlin’s wavefunc-
tion [7] for filling factors 1/q with ¢ an odd integer and associated hierarchical mod-
els [8,9] for other fractions with odd denominators. The Laughlin states describe
incompressible fluids, as the ‘binding’ of all flux quanta to the positions of particles
implicit in Laughlin’s wavefunction is possible only at filling fractions v = 1/g. Any
deviation from this filling fraction requires the nucleation of excitations.

The ‘binding’ of ¢ flux quanta to each particle gives rise to ¢ zeros in the wave-
function as a function of the relative coordinate of any pair of particles. This reduces
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the probability that any iwo particles approach each other closely and the interac-
tion energy for any short-range repulsive interaction between particles is therefore
lowered [10].

This interpretation of Laughlin’s wavefunction emphasizes the treatment given
to configurations in which pairs of particles approach each other closely. However,
the success of many other descriptions of the fractional quantum Hall effect which
incorporate Laughlin’s ‘binding’ of flux quanta to particles’ positions—theories based
on an order parameter [11], a semiclassical theory (cooperative ring exchange) [12] and
the fermion—-flux composite picture [13]—shows that the effect is more robust than the
interpretation outlined above might at first suggest.

The importance of zeros in the wavefunction as a function of the relative coordinate
of any pair of particles to the short-range behavour is less obvious for particles on a
lattice, whereas all the ‘coarse-grained’ properties identified as important in the other
theories should be well reproduced. We have therefore studied numerically systems
of particles on a lattice and looked for fractional quantum-Hall-like minima in the
ground state energy as a function of filling factor.

Particles in a magnetic filed on a lattice do not have a simple Landau level structure
but have instead the Bofstadter single-particle spectrum. It is therefore not always
sensible to say that all *particles are in the lowest Landau level’ as Hofstadter bands
corresponding to a particular Landau level cannot always be identified. However,
there is the advantage that even if the correspondence between Landau levels and
Hofstadter bands is not always clear any calculations automatically take account of the
inter-Landau-level transitions which are usually neglected in calculations for particles
in the continuum.

2. The model

We study numerically the ground state energy of small systems of spin-polarized elec-
trons on a square lattice coupled to a magnetic field. We identify fractional quantum
Hall states on a lattice from the minima which appear in the contribution to the ground
state energy from the interaction between particles as a function of filling factor. We
assume that such minima become cusps in the thermodynamic limit.

We work with a tight-binding Hamiltonian describing electrons on a two-
dimensional square lattice with nearest-neighbour repulsive interactions in the pres-
ence of a magnetic field:

H:theie"'c?cj+HC+U2n;nj - - ' (1)
{4} {i5)
where ¢; are the usual fermion operators on the lattice, n; = ¢f¢; is the particle

number operator and (ij} denotes that the sums are over nearest neighbours of the

particular lattice. The parameter I/ gives the strength of nearest-neighbour repulsion
(U > 0). The phase factor

:
e,,:m:f A-dl (2)
3

is defined on each link so that the magnetic fux through a plaquetie is given by
® = (1/27) 3,14, 0;; in units of magnetic flux quantum $, = he/e. A is the vector
potential.
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We apply periodic boundary conditions in both directicns (DPCs), and singly peri-
odic conditions (SPCs) in the z-direction keeping hard walls in y-direction. SPCs have
the advantage of allowing every value of flux per plaquette, &, but the hard wails may
give rise to additional finite-size problems. DPCs do not have this problem but the
allowed values of flux per plaquette are constrained by the requirement that the total
number of flux quanta threading the system is integer. The phases 0;; are distributed
along the links so that the total flux through each plaqueite is the same, modulo an
integer.

We have diagonalized the Hamiltonian given by equation (1) numerically using the
Lanczos algorithm [18] defined by the iterations:

HI“n) = n—llu‘n—l) + Enlun) + 1):'al""“|r|.+1) (3)
€= (unlnlun) v, = (unlﬂlun-}l) (4)

with v_, = 0, so that an orthonormal basis {l©,}} is generated after a suitable choice
of the initial state Juy}. Diagonalizing the tridiagonal matrix

Em ifr=m
v, fn=m+1
Hygn = ¢ " . (5)
U, fn=m-1
0 otherwise

we obtain the eigenvalues and eigenstates expressed in terms of |u,). We have studied
systems with up to five electronson a 3 x 4,3 x 5,4 x 4 and 4 x 5 lattices (where ‘4 x 5’
means four sites in y-direction and five sites in z-direction). In all cases, less than 50
Lanczos steps were necessary to obtain the ground state with enough accuracy (one
part in ~ 10%). Independent runs have been carried out starting from a trial state
corresponding to different configurations in order to be sure we have obtained the true
ground state.

The single-particle spectrum of (1) for the non-interacting case has subbands with
weil-defined gaps. When the magnetic flux per plaquette, ®, is a rational number,
p/q, the spectrum has ¢ subbands. The ground state energy for N noninteracting
particles is just the sum of the N lowest single-particle (kinetic) energies which can
be calculated exactly. It has an absolute minimum as a function of total flux when
there is exactly one flux quantum per particle.

The ground state energy of the interacting system on a lattice varies as a function
of the magnetic field as a result of the variation of the kinetic energy as well as the
interaction energy. The variation in the kinetic energy reflects the variation of the
(Hofstadter) band structure with flux per plaquette. For U/t < 1 this is the dominant
effect and by itself can give rise to deep minima at certain filling fractions as has
already been observed when the flux per plaquette & = v, M, + M,/M,, where ¥, is
the number of electrons per site and M; and M, are integers [15]. However, this is
not a feature of the continuum model in- which the variation of the kinetic energy is
only via w,, the cyclotron frequency, which is a smooth function of the magnetic field.

Our purpose is to study whether in a magnetic field particles on a lattice can
reduce the interaction energy between them in 2 way similar to that observed in the
continuum. We therefore define the quantity:

Eint = Egs - (‘I’gs |7{kinlwgs) (6)
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where E_ is the ground state energy and H,;, is the hopping part of the Hamiltonian.
The variation of E_, due to the Hofstadter band structure has been removed in E,
making the variation of the contributions from the interaction energy more apparent.
We define the filling factor, v, as the number of particles per plaquette divided

by the flux per plaquette. For DPCs this is the same as the number of particles
per site divided by the flux per plaquette. For SPCs the number of plaguettes and the
number of sites is different (there are more sites than plaquettes). This is analogous to
what bappens in the continunm case. For DPCs [16] the total flux, Ny, is just given by
Ng = N.v~! whereas with oper boundary conditions on the disk Ny = N v~ + X (v}
with X(v) a correction factor [17]. Canright et al [14] took » to be the ratio of the
number of electrons per site divided by the number of flux quanta per plaquette. We
believe that our definition is more appropriate as it allows better comparison between

systems with different sizes.

3. Results

In all cases we study, we find that for U 2 3¢ the interaction energy, E ., has deep
minima at fractional fillings with odd denominators. As an example we plot in figure 1
the ground state energy as a function of filling fraction for a system of four electrons
on a 4 x 4 lattice (4/4 x 4) taking U = 5t and assuming DPCs. Two deep minima
can be seen at ¥ = 4/7 and v = 4/9 which we identify with fractional quantum Hall

states.
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Figure 1. Ground state energy on a 4/4 X 4 lattice as a function of filling factor v
assuming DPCs. We identify the two deep minima with FQH states, U = 5¢.

Comparing the results obtained for the two different types of boundary conditions
we find that the results for a system with kN, electrons using SPCs correspond well
with those for a system with N, electrons using DPCs, where the factor k is the
ratio of the total number of plaquettes in the two respective cases. This implies that
to compare systems with the different boundary conditions at any particular filling
fraction the equivalence is set by the number of plaguettes rather than the number
of sites, and is the main motivation for defining the filling fraction as we have. For a
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system with 4 x 4 sites k = 12/16 so that the system with SPCs corresponding to the
one studied for figure 1 has three particles. The ground state energy as a function of
filling fraction for three particles on a 4 x 4 lattice with I/ = 5¢ are shown in figure 2.
Deep minima are observed at the same filling fractions as those found in the equivalent
system with DPCs. (There are also local minima at v = 3/11 and v = 3/13, which
appear to correspond to the minima which we have observed at v = 4/15and v = 4/17
in the corresponding 4/4 x 4 system using DPCs (see figure 1)).
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Figure 2. Ground state energy on a 3/4 x 4 lattices as a function of filling factor v
assuming spPCs. LJ = 5¢.

In table 1 we show the filling fractions for which minima are observed for systems
with 4x 5 sites and three, four and five particles. We find that only filling fractions with
odd denominators give minima. We also note the correspondence between systems
with SPCs and DPCs. The ratio of the number of plaquettes in the two cases is 3:4 so
that according to our earlier observation the system with three particles in SPCs should
correspond well with that with four in DPCs. In both cases there is a deep minimum
at 4/9. The deep minimum at 4/11 (four particles, DPCs) would then correspond to
that at 1/3 (three particles, SPCs).

Table 1. Quantum Hall states identified from the minima in the ground state energy
on an Nj4 x 5 lattice. The stength of interaction hac been taken as U 2> 4t. Deep
minima are indicated by an asterisk.

N v (ppcs) v (SPCs)}
a* 1 3 g3°* 4% 1% 3 1
7T 231 11' 13 513135
an 4% 4 1 4% 4% 5 4
31T I7rs T I Is
5* 5 5 4 5% 5% 2
g 10 17 57 19 1§

As mentioned in the introduction an important feature of Laughlin’s wavefunction
is considered to be ‘binding’ of zeros to the position of particles. This manifests itself
in the power of r with which the pair correlation function, g(r), vanishes as r — 0.
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To investigate short-range correlations on the lattice in the presence of magnetic
field we introduce the function

e | ™
where
CV(R) = Nsﬂl(‘pgsi Znin‘jlwgs) (8)

and the sum is restricted to pairs of sites separated by a distance R. A, (R) measures
the factor by which the probability that any two sites a distance R apart are occupied
in the ground state differs when the magnetic field giving a filling factor v is applied.
R =1 corresponds to nearest neighbours and R = v/2 to next-nearest neighbours.
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Figure 3. Nearest-neighbour (R = 1) and next-nearest-neighbour (R = /2) corre-
lation function Ay {R) for v == 4/9 as a function of the interaction strength Uft.

In figure 3 we show how for the system studied for figure 1 h,(R) varies with
U/t when the applied magnetic field corresponds to a filling fraction 4/9 for the two
cases R = 1 and R = v/2. For U 2 3¢ there is a significant reduction of the nearest-
neighbour correlation function over its zero-field value. This occurs for a large range

of values Uft and extends well beyond the case where U = 8t—the bandwidth. We
observe similar behaviour using SPCs.

4, Discussion

We interpret our observation that deep minima in the interaction energy, £, (see
equation (6)} occur only at filling fractions with odd denominators as clear evidence
that fractional quantum Hall states occur in small systems on a lattice.
Unfortunately we have not managed yet to resolve precisely how the various min-
ima we observe scale with particle number, lattice size and aspect ratic. However,
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we have found that the results for two systems with the same flux density and lat-
tice, one with singly periodic conditions and the other with doubly periodic boundary
conditions, closely resemble each other when the number of particles per plaquette is
the same in the two cases. This suggests that it is the number of plaquettes which
determines the commensuration between flux and particles on a lattice.

It is our aim to study how systems of particles on a lattice behave in a magnetic
field without fotal spin polarization. In particular we would like to see whether this
can lead to states with even-denominator filling fractions.
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