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Abstract. We calculate the ground state eneepies and wavefunction. for s m a l l  
systems of fermions on a lattice wing singly and doubly periodic boundary conditions. 
We find minima in the ground state energy whm the magnetic Eux per plaquette 
corresponds to filling fractions with odd denaninstors. We interpret t h e s  minima 
in tennr of (raclional quantum Hall stater. The pair correlation function at neared 
and next-nearest neighburs is calculated s a function of the repnbive intuadion 
strength between particles. 

1. Introduction 

The properties of tight-binding electrons on a square lattice in a magnetic field are 
complicated and rich in structure. The singleparticle spectrum shows such interesting 
features as self-similarity, nesting properties and a Landau-level-like structure which 
has been studied by Hofstadter [I] and later by others [2]. 

The problem of interacting electrons in a square lattice has attracted attention as 
a possible model for high-temperature superconductors. Theoretical interest has been 
concentrated on commensurate flux states in the t - J  model [3,4], the study of anyons 
on a lattice [5] and the relation to the fractional quantum Ball effect (FQHE) [SI. 

Recently, Canright et a1 [14] studied small systems of anyons on a lattice. They 
found that as a function of statistics and applied magnetic field the ground state 
of ‘free’ anyons could be either superconducting or quantum-Hall-like. Anyons are 
equivalent to bosons with flux tubes attached. The Aharonov-Bohm phases asso- 
ciated with encirclement of a flux tube reproduce the phase factor required by the 
statistics. Canright ei a/ [14] also found that a mean field theory, which accounted 
for the statistics on average by treating the flux tubes attached to the particles as a 
homogeneous background magnetic field, predicted the right ground state for a large 
range of parameters. 

The most widely accepted theory of the FQHE is based on Laughlin’s wavefunc- 
tion [7] for filling factors l / q  with q an odd integer and associated hierarchical mod- 
els [8,9] for other fractions with odd denominators. The Laughlin states describe 
incompressible fluids, as the ‘binding’ of all flux quanta to the positions of particles 
implicit in Laughlin’s wavefunction is possible only at filling fractions U = l/q. Any 
deviation from this filling fraction requires the nucleation of excitations. 

The ‘binding’ of q flux quanta to each particle gives rise to q zeros in the wave- 
function as a function of the relative coordinate of any pair of particles. This reduces 
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the probability that any two particles approach each other closely and the interac- 
tion energy for any short-range repulsive interaction between particles is therefore 
lowered [lo]. 

This interpretation of Laughlin’s wavefunction emphasizes the treatment given 
to configurations in which pairs of particles approach each other closely. However, 
the success of many other descriptions of the fractional quantum Hall effect which 
incorporate Laughlii’s ‘binding’ of flux quanta to particles’ positions-theories based 
on an order parameter [Ill, asemiclassical theory (cooperative ring exchange) [12] and 
the fermion-Bux comphsite picture [13]--shows that the effect is more robust than the 
interpretation outlined above might at first suggest. 

The importance ofzeros in the wavefunction as a function of the relative mrdinate 
of any pair of particles to the short-range behavour is less obvious for particles on a 
lattice, whereas all the ‘coarse-grained’ properties identified as important in the other 
theories should be well reproduced. We have therefore studied numerically systems 
of particles on a lattice and looked for fractional quantum-Hall-like minima in the 
ground state energy as a function of filling factor. 

Particles in a magnetic filed on a lattice do not have asimple Landau level structure 
but have instead the Hofstadter single-particle spectrum. It is therefore not always 
sensible to say that all ‘particles are in the lowest Landau level’ as Hofstadter bands 
corresponding to a particular Landau level cannot always be identified. However, 
there is the advantage that even if the correspondence between Landau levels and 
Hofstadter bands is not always clear any calculations automatically take account of the 
inter-Landau-level transitions which are usually neglected in calculations for particles 
in the continuum 
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2. The model 

We study numerically the ground state energy of small systems of spin-polarized elec- 
trons on a square lattice coupled to a magnetic field. We identify fractional quantum 
Hall states on a lattice from the minima which appear in the contribution to the ground 
state energy from the interaction between particles as a function of filling factor. We 
assume that such minima become cusps in the thermodynamic limit. 

We work with a tight-binding Hamiltonian describing electrons on a two- 
dimensional square lattice with nearest-neighbour repulsive interactions in the pres- 
ence of a magnetic field: 

where c; are the usual fermion operators on the lattice, n; = ctc;  is the particle 
number operator and (ij) denotes that the sums are over nearest neighbours of the 
particular lattice. The parameter U gives the strength of nearest-neighbour repulsion 
(U > 0). The phase factor 

is defined on each link so that the magnetic flux through a plaquette is given by 
cl, = (1/2a) hc/e.  A is the vector 
potential. 

Bij in units of magnetic flux quantum a,, 
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We apply periodic boundary conditions in both directions (DPcs), and singly peri- 
odic conditions (Spes) in the c-direction keeping hard walls in y-direction. SPCS have 
the advantage of allowing every value of flux per plaquette, a, but the hard waUs may 
give rise to  additional finitesize problems. DPCs do not have this problem but the 
allowed values of flux per plaquette are constrained by the requirement that the total 
number of flux quanta threading the system is integer. The phases !Iij are distributed 
along the links so that the total flux through each plaqueihe is the same, modulo an 
integer. 

We have diagonalized the Hamiltonian given by equation (1) numerically using the 
Lanczos algorithm [18] defined by the iterations: 

with u - ~  = 0, so that an orthonormal basis {[U")} is generated after a suitable choice 
of the initial state Iuo). Diagonalizing the tridiagonal matrix 

f Em i f n = m  
if n = m +  1 
if n = m - 1 
otherwise 

(5) 

we obtain the eigenvalues and eigenstates expressed in terms of Iu ) We have studied 
systems with up to five electrons on a 3 x 4,3 x 5,4 x 4 and 4 x 5 lattlces (where '4x 5' 
means four sites in y-direction and five sites in c-direction). In all cases, less than 50 
Lanczos steps were necessary to obtain the ground state with enough accuracy (one 
part in - lo4). Independent runs have been carried out starting from a trial state 
corresponding to different configurations in order to be sure we have obtained the true 
ground state. 

The single-particle spectrum of (1) for the non-interacting case has subbands with 
well-defined gaps. When the magnetic flux per plaquette, a, is a rational number, 
p/q, the spectrum has q subbands. The ground state energy for N noninteracting 
particles is just the sum of the N lowest single-particle (kinetic) energies which can 
be calculated exactly. It has an absolute minimum as a function of total flux when 
there is exactly one flux quantum per particle. 

The ground state energy of the interacting system on a lattice varies as a function 
of the magnetic field as a result of the variation of the kinetic energy as well as the 
interaction energy. The variation in the kinetic energy reflects the variation of the 
(Hofstadter) band structure with flux per plaquette. For U / t  < 1 this is the dominant 
effect and by itself can give rise to deep minima at certain filling fractions as has 
already been observed when the flux per plaquette = v,M, + M,/Mi, where v, is 
the number of electrons per site and M, and Mz are integers [15]. However, this is 
not a feature of the continuum model in which the variation of the kinetic energy is 
only viaw,, the cyclotron frequency, which is a smooth function of the magnetic field. 

Our purpose is to study whether in a magnetic field particles on a lattice can 
reduce the interaction energy between them in a way similar to that observed in the 
continuum. We therefore define the quantity: 

R .. 
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where E is the ground state energy and Xkin is the hopping part of the Hamiltonian. 
The vargtion of EB. due to the Hofstadter band structure has been removed in Ei,, 
making the variation of the contributions from the interaction energy more apparent. 

We define the filling factor, v,  as the number of particles per plaquette divided 
by the flux per plaquette. For DPCs this is the same as the number of particles 
per site divided by the flux per plaquette. For spcs the number of plaquettes and the 
number ofsites is different (there are more sites than plaquettes). This is analogous to 
what happens in the continuum case. For DPCs [16] the total flux, N*, is just given by 
N* = N p - '  whereas with open boundary conditions on the disk Ne = N p - *  + X ( Y )  
with X ( v )  a correction factor 1171. Canright el a1 [I41 took U to be the ratio of the 
number of electrons per site divided by the number of flux quanta per plaquette. We 
believe that our definition is more appropriate as it allows better comparison between 
systems with different sizes. 
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3. Results 

In all cases we study, we find that for U 2 3t the interaction energy, E,,,, has deep 
minima at fractional filling with odd denominators. As an example we plot in figure I 
the ground state energy as a function of filling fraction for a system of four electrons 
on a 4 x 4 lattice (4/4 x 4) taking U = 5t and assuming DPCs. Two deep minima 
can be seen at v = 4/7 and v = 4/9 which we identify with fractional quantum Hall 
states. 

v 
Figure 1. Ground state energy on e. 414 x 4 lattice m a functiw of filling factor U 
ayiuming DPCS. We identify the two deep minima with FQA states. U = 5;. 

Comparing the results obtained for the two different types of boundary conditions 
we find that the results for a system with kNe electrons using SPCs correspond well 
with those for a system with Ne electrons using DPCs, where the factor k is the 
ratio of the total number of plaquettes in the two respective cases. This implies that 
to compare system with the different boundary conditions at any particular filling 
fraction the equivalence is set by the number of plaquettes rather than the number 
of sites, and is the main motivation for defining the filling fraction as we have. For a 
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system with 4 x 4 sites k = 12/16 so that the system with SPCs corresponding to the 
one studied for figure 1 has three particles. The ground state energy as a function of 
filling fraction for three particles on a 4 x 4 lattice with U = 5t are shown in figure 2. 
Deep minima are observed at the same filling fractions as those found in the equivalent 
system with DPCs. (There are also local minima at U = 3/11 and U = 3/13, which 
appear to correspond to the minima which we have observed at U = 4/15 and U = 4/17 
in the corresponding 4/4 x 4 system using DPCs (see figure 1)). 

O.,t n rl 

O I  0.1 

0.01 1 
0.2 0.3 0 4  0.5 Ob 0.7 0.8 0.9 1.0 

v 
Figure 2. Ground state energy on a 314 x 4 lattices u a function of filling factor Y 

assuming SPCS. U = 5t. 

In table 1 we show the filling fractions for which minima are observed for systems 
with 4x 5 sites and three, four and five particles. We find that only filling fractions with 
odd denominators give minima. We also note the correspondence between systems 
with SPCS and DPCS. The ratio of the number of plaquettes in the two cases is 3:4 so 
that according to our earlier observation the system with three particles in SPCS should 
correspond well with that with four in DPCS. In both cases there is a deep minimum 
at 4/9. The deep minimum at 4/11 (four particles, DPCs) would then correspond to 
that at 1/3 (three particles, SPCs). 

Table 1. QuantumHallstate4identifiedf"themiaimain thepoundstateenergy 
on an N/4 x 5 lattice. The stength of interaction h a  been t&en m U 2 4t. Deep 
minima M indicated by M uter i& 

N Y (DPCs) Y (SPCS) 

4 $' L f. f *  6 . 3 p* 1 3 9. 4 .  1. 3 1 
7 , 3' 11' 13 3 5 8 s 

P I 1  * 1 7 - . 5  1 ' 9  v f i * i ) H  
5 . 5  5 * e. k* z 
ii + i T * i ?  5 , 7  ' 9  9 . 5  

As mentioned in the introduction an important feature of Laughlin's wavefunction 
is considered to be 'binding' of zeros to the position of particles. This manifests itself 
in the power of r with which the pair correlation function, g(r), vanishes as r + 0. 
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To investigate short-range correlations on the lattice in the presence of magnetic 
field we introduce the function 

1.0' 

0 , 9  
-i 

+ a s .  

0 1  

0 ,6 .  

0.5. 

where 

i---~.---- ...-.-.______ ~ ._______ ;1 .___ / j _  

R =fi 

R = I  ------ ..... ~ 

r 

and the sum is restricted to pairs of sites separated by a distance R. h,(R) measures 
the factor by which the probability that any two sites a distance R apart are occupied 
in the ground state differs when the magnetic field giving a filling factor U is applied. 
R = 1 corresponds to nearest neighbours and R = 4 to next-nearest neighbours. 

4. Discussion 

We interpret our observation that deep minima in the interaction energy, Eint (see 
equation (6)) occur only at filling fractions with odd denominators as clear evidence 
that fractional quantum Hall states occur in small systems on a lattice. 

Unfortunately we have not managed yet to resolve precisely how the various min- 
ima we observe scale with particle number, lattice size and aspect ratio. However, 
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we have found that the results for two systems with the same flux density and lat- 
tice, one with singly periodic conditions and the other with doubly periodic boundary 
conditions, closely resemble each other when the number of particles per plaquette is 
the same in the two cases. This suggests that it is the number of plaquettes which 
determines the commensuration between flux and particles on a lattice. 

It is our aim to study how systems of particles on a lattice behave in a magnetic 
field without total spin polarization. In particular we would like to see whether this 
can lead to states with even-denominator filling fractions. 
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